A hot air oven is the most common method of sterilization in the laboratory working on dry heat. Sterilization is the process of removing or destroying all microorganisms including viruses, bacteria, and their spores from the article or surface without destroying their quality and quantity. It is a physical method of sterilization due to dry heat. Factors influencing sterilization by heat are nature of heat i.e dry or moist, temperature and time, number of microorganisms, nature of microorganisms, type of microorganism, and presence of organic material. Mode of action: protein denaturation, oxidative destruction of essential cell constituents, and toxic effects of elevated levels of electrolytes. It works on the principle of conduction where heat is absorbed by the exterior surface of an item and then passed onward to the next layer. This method was introduced by Louis Pasture.
Electrical devices work on the principle of dry and hot air convection (that is circulation of heated air), conduction, and radiation. The hot air convection process is of two types. a. Gravity convection process: Heated air expands and possesses less density than cooled air which rises up and displaces the cooler air (the cooler air descends). It produces inconsistent temperature within the chamber thus has a slow turnover. b. Mechanical convection: Use of fitted blower or fan that actively forces heated air throughout all areas of the chamber. This dry heat destroys bacterial endotoxins (or pyrogens ) which are difficult to eliminate by other means. This property makes it applicable for sterilizing glass bottles that are to be filled aseptically. Dry heat kills by oxidation, protein denaturation, and toxic effects of elevated levels of electrolytes and it is more efficient.
It consists of the following parts:
Metallic cabinet with heating filament and fan fixed in the walls. Thermostat, temperature control, double-walled :(inner being a poor conductor and outer being metallic and air-filled space in between the layers) insulation keeps the heat in and conserves energy. Electrically heated, and provided with a fan or a blower to ensure rapid and uniform. Heating Mechanism:- Killing effect of dry heat on microorganisms is due to i) destructive oxidation of essential cell constituents, ii) protein denaturation and iii) toxic effect of elevated levels of electrolytes.
Sterilization of articles that withstand high temperature and do not get burned e.g. Glass-wares, powders, forceps, scissors, scalpels, glass syringes, pharmaceutical products like liquid paraffin, fats, grease, and dusting powder, etc.
Wrap the articles or enclose them in a container of cardboard, aluminum, or paper. Mouths of flasks, test tube sand both ends of pipettes must be plugged with cotton wool. Articles to be sterilized such as Petri plates and pipettes may be arranged inside metal canisters and then placed. Place the articles at sufficient distances so as to allow free circulation of air in between them and to ensure uninterrupted airflow. Shut the door and switch on the hot air oven. When the thermometer shows that the oven air has reached sterilizing temperature, heating is continued for the required period of time (e.g. 160°C for an hour). Allow the temperature to fall up to 40°C (approximately 2 hours), prior to removal of sterilized materials; which prevents breakage of glassware.
A) Biological controls: 106 spores of Bacillus subtilis subsp. niger or spores of nontoxigenic strains of Clostridium tetani on paper strips are placed inside envelopes and then placed inside the hot air oven after complete sterilization inoculated in thioglycollate or cooked meat medium and incubated for sterility test under strictly anaerobic conditions for 3 to 5 days at 37°C. Growth in medium indicates the failure of sterilization.
B) Chemical control: Browne’s tube No. 3 shows a green color after sterilization at 160°C for 60 minutes ( color changes from red to green).
C) Physical control: Thermocouples and temperature chart recorder used.