
The knowledge of Safety in Microbiology is mandatory prior to work in a Microbiology laboratory/ research project to save yourself and your surroundings. Many laboratory workers, researchers, and scientists have suffered illnesses following infection associated with the microbiological investigation of microorganisms or contact with infectious materials. Some of these infections have been fatal. In 1847, Jakob Kolletschka, a close friend of Dr. Ignaz Semmelweis, cut his finger while he’s doing an autopsy and he died of symptoms like those of puerperal fever. Howard Taylor Ricketts, (born Feb. 9, 1871, Findlay, Ohio, U.S.—died May 3, 1910, Mexico City, Mex.), American pathologist who discovered the causative agent (Rickettsia) and mode of transmission of Rocky Mountain spotted fever and epidemic typhus (known in Mexico, where Ricketts worked for a time and died of typhus, as tabardillo). Dr. Carlo Urbani died while working on finding the cause of Severe Acute Respiratory Syndrome (SARS). Today we call this disease Urbani SARS. Not all the victims were directly involved in the microbiology laboratory in the investigation. Some were working in other laboratories, departments while some were visitors who visited the laboratory.
The laboratory personnel must keep in the mind. The following points are in order to prevent laboratory-associated infections. The routes by which infections require in the laboratory may be different from natural infection.
It is necessary to know the type of specimens and organisms likely to which may likely contain and while organisms are most hazardous so that precautions while working in the laboratory could be taken accordingly.
Most Hazardous techniques, if possible, should be replaced with safety techniques. Taken full precautions to be protected from such dangerous microbial agents.
Outsides the laboratory: The general public may be infected if the organism is escaped during transportation of patients specimens to laboratory and/or microorganisms from the laboratory, laboratory to reference laboratory both within and outside the country. Another most important source of infection: if the general public comes in contact with infection waste, discarded or effluent materials from the laboratory due to failure of the laboratory to decontaminate such materials properly.
Microbial classification is based on their potential impact on humans and the environment is divided into Risk Groups. WHO has classified these microorganisms as follows:
Risk Group 1 (RG1): They belong to the low individual and low community risk. These microorganisms are unlikely to cause disease. e.g. group of food spoilage bacteria, common molds, non-diarrheagenic E.coli and Yeasts.
Risk Group 2 (RG2): They belong to moderate individual risk, limited community risk. These microorganisms are unlikely to be a significant risk to the laboratory personnel or the environment, but exposure may cause infection. e.g. staphylococci, streptococci, enterobacteria (except Salmonella Typhi), clostridia, vibrios, adenoviruses, polioviruses, coxsackieviruses, hepatitis viruses, Toxoplasma, and Leishmania.
Risk Group 3 (RG3): They are high individual risk, limited/moderate community risk. These microorganisms usually cause serious disease and may present a significant risk to laboratory workers, but may only present a moderate risk of spreading amongst a community. e.g.Brucella, Mycobacterium tuberculosis, Salmonella Typhi, Francisella, Pasteurella pestis, many arboviruses, LCM (Lymphocytic choriomeningitis ) virus, rickettsiae, chlamydia, Coccidioides, Histoplasma, human immunodeficiency viruses (HIV), Blastomyces dermatitidis, Paracoccidioides brasiliensis, Penicillum marneffei.
Risk Group 4 (RG4): They belong to the high individual and high community risk. These microorganisms usually cause life-threatening diseases and may be readily transmissible. Effective treatments are not usually available. e.g. e .g. Marburg, Ebola, Lyssa, CFD (Creutzfeldt-Jakob disease), Equine encephalitis viruses, SARS (Severe Acute Respiratory Syndrome) virus, and certain arbovirus and they are hemorrhagic fever viruses.
Microbiological safety cabinets:
Types of safety cabinets:
Class I and II: are used to work with risk groups I, II, and III
Class III: used to work with risk group IV
All specimens, cultures, and other materials that have been examined in the microbiology laboratory must be made noninfectious before being discarded or leaving the laboratory.
Laboratory waste that includes articles, which will be reused, should be disinfected by chemical or physical means.
Decontamination using chemical disinfectants for
These includes:
Note: Chemical disinfectants must be prepared in correct dilution
2. Decontamination by autoclaving: Normally 15 lbs pressure for 15 minutes.
3. Decontamination by incineration: Destruction of microorganisms with the use of incinerator.
International regulation regarding the transport of specimens and infectious material can be obtained from the health authority of the respective country. Airlines people can also have rules and regulations regarding this (IATA guidelines)